Банк заданий 7 класс профильный уровень 2. КИНЕМАТИКА

2.1 Материальная точка. Система отсчёта.

К каждому из заданий даны 4 варианта ответа, из которых только один правильный.

- 1. Механическим движением называется
- 1) изменение тела в пространстве относительно других тел с течением времени
- 2) изменение положения тела в пространстве
- 3) любое движение тела
- 4) изменение положения тела в пространстве относительно других тел с течением времени
 - 2. Систему отсчета образуют
- 1) тело отсчета и система координат, связанная с ним
- 2) тело отсчета и прибор для измерения времени
- 3) система отсчета и прибор для измерения времени
- **4)** тело отсчета, система координат, связанная с ним, и прибор для измерения времени
 - 3. Какое (-ие) утверждение (-ия) верно(-ы)?
- А. Материальная точка имеет размеры
- Б. Материальная точка не обладает массой
- 1) ни А, ни Б
- **2**) только Б
- 3) и А, и Б
- **4)** только A
 - 4. Материальной точкой называется
- 1) тело, размерами которого можно пренебречь
- 2) тело, массой которого в условиях рассматриваемой задачи можно пренебречь
- 3) тело, обладающее массой, размерами которого в условиях рассматриваемой задачи можно пренебречь

- 4) тело, размерами которого нельзя пренебречь
- **5.** При каком движении тела его можно рассматривать как материальную точку даже в том случае, если проходимое им расстояние сравнимо с его размерами?
- 1) тепловом
- 2) поступательном
- 3) вращательном
- 4) свободном падении
- **6.** Движение, при котором в любой момент времени все точки тела движутся одинаково, называется
- 1) поступательным
- 2)вращательным
- 3) механическим
- 4)вращательным
- **7.** Укажите, в каких из приведенных ниже случаях изучаемое тело можно принять за материальную точку.
- А. Вычисляют давление трактора на грунт
- Б. Определяют высоту поднятия ракеты
- 1)только А
- 2)только Б
- **3**)А и Б
- **4**)ни А, ни Б
- **8.** Укажите, в каких из приведенных ниже случаев снаряд можно принять за материальную точку.
- А. При расчете дальности полета снаряда
- **Б.** При расчете формы снаряда, обеспечивающей уменьшение сопротивления воздуха
- **1**) только A
- 2) только Б
- 3) А и Б
- **4)** ни А, ни Б

- 9. Какую систему координат следует выбрать для определения положения трактора в поле?
- 1)одномерную
- 2)двухмерную
- 3)трехмерную
- 4)любую
- **10.** Какую систему координат следует выбрать для определения положения лифта?
- 1) Одномерную
- 2) двухмерную
- 3) трехмерную
- 4) любую
- **11.** Какая система координат необходима, чтобы определить путь, пройденный пешеходом, если он идет прямо?
- 1) одномерную
- 2) двухмерную
- 3) трехмерную
- 4) Любую
- **12.** Какая система координат необходима, чтобы определить путь, пройденный пешеходом, если он идет прямо, а потом поворачивает вправо?
- 1) одномерную
- 2) двухмерную
- 3) трехмерную
- 4) любую
- **13.** В каком случае можно принять девочку за материальную точку, если она перемещается на расстояние, соизмеримое с ее размерами?
- 1) девочка едет на санках
- 2) девочка едет на велосипеде

- 3) девочка бегает
- 4) девочка катается на роликах
- **14.** В каком случае движение человека можно считать поступательным, если расстояние, на которое он переместился, соизмеримо с его размерами?
- 1) человек идет пешком
- 2) человек скачет на лошади
- 3) человек едет на санях
- 4) человек ведет машину
- **15.** Самолет движется со скоростью 750 км/ч. В каком случае его можно принять за материальную точку?
- 1) самолет никогда нельзя принять за материальную точку
- 2) если самолет летит 10 с
- 3) если самолет летит 15 мин
- 4) Если самолет летит 1,5 часа
- **16.** В каком случае Землю можно принять за материальную точку?
- 1)никогда нельзя
- 2) при расчете скорости движения точки экватора при суточном вращении Земли вокруг своей оси
- 3) при расчете скорости движения спутника по орбите вокруг Земли
- 4) при расчете расстояния от Земли до Солнца

В заданиях 17-20 требуется указать последовательность цифр, соответствующих правильному ответу.

17. На столе железнодорожного вагона, отъезжающего от станции, лежит газета. Как движется газета относительно вагона, проводника, равномерно идущего по вагону, поверхности земли? К каждой позиции первого столбика

подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Тело отсчета	Вид движения
А) вагон	1) равномерно
Б) проводник	2) неравномерно
В) поверхность земли	3) покоится

18. Определите, перемещается или нет газета, лежащая в кресле самолета, относительно пассажира, сидящего рядом, стюардессы, идущей между рядами, пилота, ведущего самолет? К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Тело отсчета	Характер движения
А) пассажир	1) движется
Б) стюардесса	2) покоится
В) пилот	

19. Положение тела определяется тремя, двумя и одной координатой. В каком случае тело движется в пространстве, в каком – на плоскости, в каком - по прямой? К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Количество координат	Вид движения
A) 3	1) на прямой
Б) 2	2) на плоскости
B) 1	3) в пространстве

20. Тело может двигаться по прямой, на плоскости или в пространстве. Какое количество координат необходимо для того, чтобы определить положение тела в каждом случае? К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Вид движения	Количество координат
А) по прямой	1) 3
Б) на плоскости	2) 2
В) в пространстве	3) 1

2.2. Перемещение. Определение координаты движущегося тела. Перемещение при прямолинейном равномерном движении.

К каждому из заданий даны 4 варианта ответа, из которых только один правильный.

- 1. Рассмотрим два вида движения тел.
- **А.** Троллейбус движется по прямой улице. К каждой следующей остановке он прибывает через равные интервалы времени и через равные интервалы отбывает от них
- **Б.** Автомобиль движется по дороге и проходит за любые равные промежутки времени одинаковые расстояния
- В каком случае движение тела является равномерным?
- 1) только в А
- 2) только в Б
- **3**) в А и в Б
- **4**) ни в А, ни в Б
 - 2. Перемещением тела называется

1) линия,	соединяющая	начальное	и	конечно	е положение
тела					
2) вектор,	соединяющи	ий начал	ьно	е и і	последующее
положени	е тела				

- 3) линия, вдоль которой движется тело
- 4) длина траектории, по которой движется тело

3. Выберите формулу координаты прямолинейного равномерного движения. $x = x_0 + v_x$ 2) $x = x_0 + v_y$ о движения. 2) $x = x_0 + v_x \cdot t$ 3) $S = v \cdot t$ 4) $x = x_0 + \frac{v_x \cdot t^2}{2}$

1)
$$x = x_0 + v_x$$
 2

$$2) x = x_0 + v_x \cdot v$$

3)
$$S = \upsilon \cdot t$$

4)
$$x = x_0 + \frac{v_x \cdot t^2}{2}$$

Выберите прямолинейного формулу скорости равномерного движения.

$$1) \ \upsilon = S \cdot \iota$$

2)
$$v = \frac{t}{s}$$

1)
$$v = S \cdot t$$
 2) $v = \frac{t}{S}$ 3) $v = \frac{x - x_0}{t}$ 4) $v = \frac{x_0}{x \cdot t}$

$$4) \ \upsilon = \frac{x_0}{x \cdot t}$$

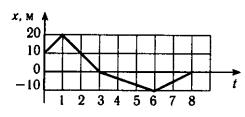
- 5. Путь равен перемещению, когда
- 1) тело движется не прямолинейно, но равномерно
- 2) тело движется прямолинейно, но не в одном направлении
- 3) тело движется прямолинейно в одном направлении
- 4) тело движется не прямолинейно
- 6. Как должно двигаться тело, чтобы модуль вектора перемещения был равен пути?
- 1)по окружности
- 2)по кривой линии
- 3)по прямой
- 4)по прямой в одном направлении

7. Тело переместилось из точки с координатами (-3;-4) в точку с координатами (1;1). Определите проекцию вектора перемещения на ось ОХ.

1) 3

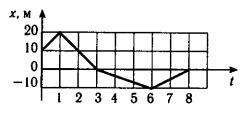
2) 5

- **3**) 1
- **4**)4


- 8. Тело переместилось из точки с координатами (-3;-4) в точку с координатами (1;1). Определите проекцию вектора перемещения на ось ОУ.
- 1)3

3)1

- 9. Мяч, брошенный из окна дома с высоты 3 м, падает на землю на расстоянии 4 м от стены. Чему равен модуль перемещения мяча?
- **1**) 5_M
- **2**) 3_M


2) 5

- 3) 4_M
- **4)** 7_M
- 10. Мяч упал с высоты 4м, отскочил от пола и был пойман на высоте 2м. Чему равен путь и модуль перемещения мяча?
- 1) путь 6м, перемещение 2м бм
- 3) путь 2м, перемещение
- 2) путь 4м, перемещение 2м
- 4) путь 2м, перемещение 4м
- 11. Тело движется прямолинейно вдоль оси ОХ. В какой момент времени (см. рисунок) модуль перемещения начальной относительно был координаты максимальным?

1) 1c **2**) 3c 3) 6c 4) 8c

12. Тело движется прямолинейно вдоль оси ОХ. В какой момент времени (см. рисунок) модуль перемещения относительно начальной координаты был равен нулю?

- 1) 1c 2) 2c
- 3) 3c
- 4) 6c

- **13.** Координата тела меняется с течением времени согласно формуле x = 8 4t. Чему равна координата этого тела через 5 с после начала движения?
- **1**) 28_M

3) - 4M

2) 12 м

4) - 12_M

- **14.** Координата тела меняется с течением времени согласно формуле x=10 5t. Через сколько секунд координата тела станет равной нулю?
- 1)2c

3) 10 c

2)5c

4) 4c

- **15.** Мотоциклист движется равномерно по круговой трассе радиусом 2 км, затрачивая на каждый круг 5 минут. Найдите пройденный путь и модуль перемещения за 2,5 минуты?
- 1) путь равен 12,56 км, модуль перемещения равен 4 км
- 2) путь равен 4 км, модуль перемещения равен 0
- 3) путь равен 6,28 км, модуль перемещения равен 4 км
- 4) путь равен 6,28 км, модуль перемещения равен 0
- **16.** Велосипедист движется равномерно по круговой трассе радиусом 200 м, затрачивая на каждый круг 2 минуты. Найдите пройденный путь и модуль перемещения за 2 минуты?
- 1) путь равен 12,56 км, модуль перемещения равен 0 км
- 2) путь равен 200 м, модуль перемещения равен 100 м
- **3**)
путь равен 1256 м, модуль перемещения равен 0 км
- 4) путь равен 200 м, модуль перемещения равен 0

В заданиях 17-18 требуется указать последовательность цифр, соответствующих правильному ответу.

17. Уравнения движения тел имеют вид: $x_1 = -200 + t$; $x_2 = -20t$; $x_3 = 0$. Как и в каком направлении движутся тела?

К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

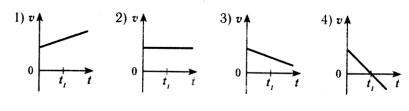
Тело	Вид движения
А) первое	1) покоится
Б) второе	2) равномерно по оси
В)третье	3) равномерно против оси

18. Уравнения движения тел имеют вид: $x_1 = 500$; $x_2 = -20 - 2t$; $x_3 = -10 + 5t$. Как и в каком направлении движутся тела? К каждой позиции первого столбика подберите соответствующую

позицию второго столбика. Цифры могут повторяться

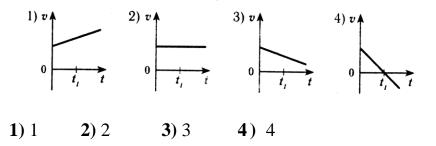
Тело	Вид движения
В) первое	1) покоится
Б) второе	2) равномерно по оси
С)третье	3) равномерно против оси

2.3 Прямолинейное равноускоренное движение. Ускорение. Скорость прямолинейного равноускоренного движения

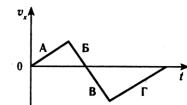

К каждому из заданий даны 4 варианта ответа, из которых только один правильный.

- **1.** Физическая величина, которая характеризует быстроту изменения скорости, называется
- 1) траекторией 2) ускорением 3) перемещением 4) путем
- **2.** Равноускоренным прямолинейным движением тела называется
- 1) движение, при котором скорость тела меняется на одну и ту же величину

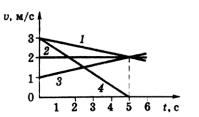
- 2) движение, при котором скорость тела постоянна
- 3) движение, при котором скорость тела за любые промежутки времени меняется на одну и ту же величину
- 4) движение, при котором скорость тела за любые равные промежутки времени меняется на одну и ту же величину.
- 3. Выберите формулу скорости равноускоренного движения.


1)
$$v = \frac{S}{t}$$
 2) $v = \frac{x - x_0}{t}$ 3) $v = v_0 + at$ 4) $v = v_0 + \frac{at^2}{2}$

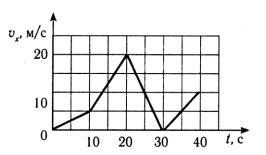
- 4. Чему равно ускорение?
- 1) отношению изменения скорости к промежутку времени, за которое это изменение произошло
- 2) произведению изменения скорости к промежутку времени, за которое это изменение произошло
- 3) отношению изменения промежутка времени к изменению скорости
- 4) отношению изменения координаты к промежутку времени, за которое это изменение произошло
- 5. На рисунках представлены графики зависимости скорости от времени для четырех тел, движущихся вдоль оси ОХ. У какого из тел в момент времени t1 ускорение равно нулю?



1) 1 **3**) 3 **2**) 2


6. На рисунках представлены графики зависимости скорости от времени для четырех тел, движущихся вдоль оси ОХ. Какое из тел движется с наибольшим по модулю ускорением?

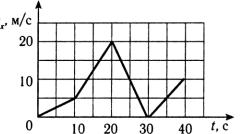
7. На рисунке представлен график зависимости проекции скорости от времени. Проекции ускорения и скорости одинаковый имеют знак участках



- **1**) **A** μ Γ
- **2)** A и B
- **3**) БиВ
- **4)**ВиГ
- 8. На рисунке представлены графики зависимости скорости от времени для четырех тел. Какое из этих тел прошло за 5 секунд максимальный путь?

1) 1 **2**) 2 **3**) 3 4)4

9. Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Модуль ускорения максимален в интервале времени


- **1**) 0-10 c
- **2)** 10-20 c
- **3)** 20-30 c
- **4)** 30-40 c

В

10. Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени.

Модуль минимален времени.

ускорения интервале v_x , м/с

- 1) 0 10c
- **2)**10 20 c
- 3)20 30 c
- **4)**30 40 c

11. Какое из приведенных ниже уравнений описывает движение, при котором скорость тела увеличивается?

- 1) $x = 20 + 3t + t^2$
- 3) $x = 5t 0.2t^2$

2) x = 25t

- **4)** x = -8t
- 12. Какое из приведенных ниже уравнений описывает движение,

при котором скорость тела уменьшается?

- 1) $x = 20 + 3t + t^2$
- 3) $x = 5t 0.2t^2$

2) x = 25t

4) x = -8t

- 13. Чему равно ускорение автомобиля, если через 2 минуты после начала движения его скорость увеличилась до 72 км/ч?
- 1) 0.6 m/c^2

- **2)** 3.6 m/c^2 **3)** 36 km/c^2 **4)** 0.17 m/c^2
- 14. За какое время автомобиль, двигаясь с ускорением 0.2 м/c^2 , увеличит свою скорость от 54 км/ч до 72 км/ч?
- 1) 3 c
- **2)** 90 c
- **3**) 25c
- **4)** 30 c
- 15. За какое время скорость шарика, движущегося с ускорением 0.6 м/c^2 , увеличится на 3 м/c?
- 1) 0,2 c **2**) 5c
- 3) 1.8 c
- 4) 0.18 m/c
- 16. Каков модуль вектора ускорения тела при торможении, если при скорости 108 км/ч он остановился через 15 с?
- 1) 0.5 m/c^2

3) 7.2 m/c^2

2) 2 m/c^2

4) 5 m/c^2

В заданиях 17-18 требуется указать последовательность цифр, соответствующих правильному ответу.

17. Ось ОХ направлена вдоль траектории движения тела. Установите соответствие между проекциями скорости и ускорения и характером движения. К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться

Проекция скорости и	Характер движения
ускорения	
A) $v_x > 0$; $a_x > 0$	1) равноускоренное
b) $v_x < 0$; $a_x < 0$	2) равнозамедленное
B) $v_x > 0$; $a_x = 0$	3) равномерное
	4) тело покоится

18. Ось ОХ направлена вдоль траектории движения тела. Установите соответствие между проекциями скорости и ускорения и характером движения. К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться

Проекция скорости и	Характер движения
ускорения	
A) $v_x > 0$; $a_x < 0$	1) равноускоренное
b) $v_x < 0$; $a_x = 0$	2) равнозамедленное
B) $v_x = 0$; $a_x = 0$	3) равномерное
	4) тело покоится

2.4. Перемещение при прямолинейном равноускоренном движении

К каждому из заданий даны 4 варианта ответа, из которых только один правильный

1. Выберите формулу перемещения равноускоренного движения.

1)
$$S = v_0 + at$$
 2) $S = v \cdot t$ 3) $S = v_0 t + \frac{at^2}{2}$ 4) $S = v_0 + \frac{at^2}{2}$

2. Выберите формулу координаты равноускоренного движения.

1)
$$x = x_0 + v \cdot t$$
 3) $x = x_0 + v_0 \cdot t + \frac{at^2}{2}$

2)
$$x = x_0 + v_0 \cdot t + a \cdot t$$
 4) $x = x_0 + \frac{at^2}{2}$

3. Уравнение зависимости перемещения от времени имеет вид $S = -5t + 2t^2$. Определите проекцию начальной скорости и проекцию ускорения.

1)5
$$M/c$$
; 2 M/c^2 2) -5 M/c ; 2 M/c^2 3) -5 M/c ; 4 M/c^2 4) 5 M/c ; 4 M/c^2

4. Уравнение зависимости перемещения от времени имеет вид $S=2t-t^2$. Определите проекцию начальной скорости и проекцию ускорения.

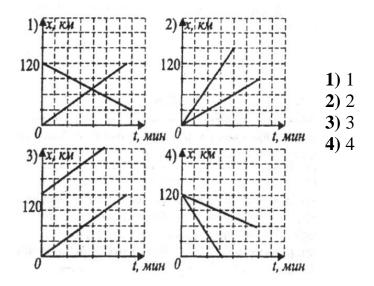
1) 2M/c; -1 M/c^2 2) -2 M/c; 2 M/c^2 3) 2 M/c; 1 M/c^2 4) 2 M/c; -2 M/c^2

5. Каково ускорение точки, если его координата зависит от времени по следующему закону $x = k + bt^2 - ct^2$?

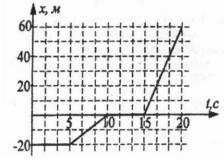
1)
$$a = c$$
 2) $a = \frac{c}{2}$ **3)** $a = 2b + c$ **4)** $a = 2c$

6. Каково ускорение точки, если его координата зависит от времени по следующему закону $x = 50.+3t + t^2$?

1)
$$a = 4$$
 2) $a = 1$ **3)** $a = 0.5$ **4)** $a = 2$


7. По графику зависимости скорости тела от времени определите путь, пройденный телом за 4 с.

8. По графику зависимости скорости тела от времени определите путь, пройденный телом за 3 с.


9. На каком графике правильно изображено условие задачи?

Через сколько минут от начала движения встретятся автобусы, если они выехали навстречу друг другу одновременно из пунктов A и B, расстояние между которыми 120 км?

10. Чему равна средняя скорость тела на всем пути,

если известен график зависимости его координаты от времени?

- 1) 2 m/c
- 2) 3 m/c
- 3) 4 M/c
- **4)** 8 m/c
- **11.** Определите ускорение тела при равноускоренном движении, если скорость тела в конце пути равна 10 м/с, а путь, пройденный телом от начала движения, равен 10 м.
- 1) 5 M/c^2
- **2)** 2 m/c^2
- 3) 4 m/c^2
- 4) 3 m/c^2

- **12.** Определите скорость в конце равноускоренного движения, если ускорение равно 1 м/c^2 , а путь, пройденный телом от начала движения, равен 18 м.
- 1) 4 m/c
- 2) 5 m/c
- 3) 6 m/c
- **4)** 7 m/c
- **13.** Трамвай, движущийся со скоростью 10 м/с, при торможении
- остановился через 5 с. Какой путь он прошел при торможении, если двигался равнозамедленно?
- **1**) 250_M
- **2)** 500 м
- **3**)50_M
- **4)** 25 M

В задании 17-18 требуется указать последовательность цифр, соответствующих правильному ответу

- **14.** Автобус подъезжает к остановке. Как изменяются скорость, ускорение и перемещение за каждую секунду торможения автобуса?
- К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Физическая величина	Изменение величины
А) скорость	1) не изменяется
Б) ускорение	2) уменьшается
В) перемещение	3) увеличивается

15. Автобус отъезжает от остановки. Как изменяются скорость, ускорение и перемещение за каждую секунду во время разгона автобуса? К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Физическая величина	Изменение величины
А) скорость	1) не изменяется

Б) ускорение	2) уменьшается
В) перемещение	3) увеличивается

2.5. Свободное падение. Движение тела, брошенного вертикально вверх

К каждому из заданий даны 4 варианта ответа, из которых только один правильный.

- 1. У верхнего конца трубки, из которой откачан воздух, находятся дробинка, пробка и птичье перо. Какое из этих тел при одновременном старте первым достигнет нижнего конца трубки?
- 1) дробинка пробка 3) птичье перо **4**) все три одновременно
- 2. Движение тела только под влиянием притяжения к Земле называется
- 1) равноускоренным движением
- 2) равномерным движением
- 3) свободным падением баллистическим движением

3. Из предложенных формул выберите ту, по которой можно рассчитать скорость тела, движущегося вертикально вверх.

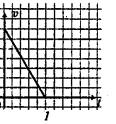
1)
$$v = v_0 + gt$$
 2) $v = v_0 + gt^2$ **3**) $v = v_0 - gt^2$ **4**) $v = v_0 - gt$

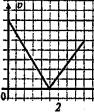
4. Из предложенных формул выберите ту, по которой можно рассчитать скорость тела, движущегося вертикально вниз.

1)
$$v = v_0 + gt$$
 2) $v = v_0 + gt^2$ **3**) $v = v_0 - gt^2$ **4**) $v = v_0 - gt$

5. По какой формуле можно рассчитать перемещение тела, движущегося вертикально вниз?

1)
$$S = v_0 t + \frac{gt^2}{2}$$
 2) $S = v_0 t - \frac{gt^2}{2}$ 3) $S = v_0 + gt$ 4 $S = v_0 + \frac{gt^2}{2}$

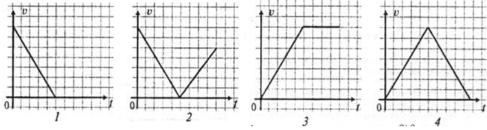

6. По какой формуле можно рассчитать перемещение тела, движущегося вертикально вверх?


1)
$$S = v_0 t + \frac{gt^2}{2}$$
 2) $S = v_0 t - \frac{gt^2}{2}$ 3) $S = v_0 + gt$ 4) $S = v_0 + \frac{gt^2}{2}$

- 7. Тело бросили вертикально вверх с начальной скоростью 2 м/с. С какой скоростью оно упадет на Землю?
- 1) 4 m/c 2) 2 m/c3) 1 m/c**4)** 0
- 8. Тело бросили вертикально вверх с начальной скоростью 2 м/с. Через некоторое время скорость стала равна нулю. Эта точка называется
- 1) точкой остановки
 - 2) точкой максимального подъема
- 3) началом отсчета
- 4) началом падения
- 9. С какой высоты свободно падает камень, если расстояние до земли он преодолел за 4 с?
- **1)** 40 M **2)** 20 M
- **3**)80 м

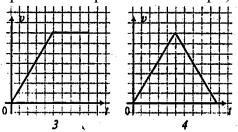
- **4**)160_M
- **10.** За какое время мяч, начавший падение без начальной скорости, проходит путь 20 м?
- **1)**4 c

2) 20c



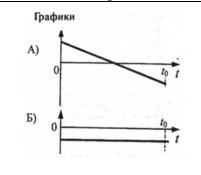
- **3**) 2c **4)** 40c
- 11. Мяч падает с начальной скоростью 3 м/с. Какой станет его скорость через 2 с полета?
- 1) 5 M/c2) 32 m/c
 - 3) 23 m/c
- **4)** 1 m/c
- 12. На какую максимальную высоту поднимется тело, брошенное с начальной скоростью 20 м/с?
- $1)20_{\rm M}$
- 2) 40_M

- **3**)200_M
- **4**)10_M
- 13. При свободном падении первое тело находилось в полете в 2 раза больше времени, чем второе. Сравните их перемещения.
- 1) перемещение первого тела в 2 раза больше

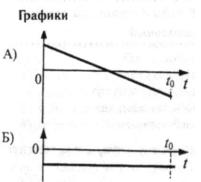

- 2) перемещение первого тела в 2,5 раза больше
- 3) перемещение первого тела в 3 раза больше
- 4) перемещение первого тела в 4 раза больше
- **14.** Как и во сколько раз изменится высота подъема брошенного вертикально вверх тела, если начальная скорость увеличится в 3раза?
- 1) увеличится в 3 раза
- 2) уменьшится в 9 раз
- 3) увеличится в 9 раз
- **4)** увеличится в **1**,5 раза
- **15.** Тело брошено вертикально вверх с некоторой начальной скоростью. Какой из представленных ниже графиков зависимости модуля скорости от времени

соответствует этому движению?

- **1**) 1 **2**) 2
- **3**) 3
- **4**) 4
- **16.** Упругий мяч, свободно падающий с некоторой высоты, был пойман на той же высоте. Какой из графиков зависимости проекции скорости от времени соответствует данному движению (ось ОУ направлена вертикально вверх)?
- **1**) 1
- **2**) 2
- **3**) 3


4) 4

В задании 17-18 требуется указать последовательность цифр, соответствующих правильному ответу.


17. Шарик брошен вертикально вверх с начальной скоростью υ (см. рисунок). Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять (t_0 - время полета). К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

1	11 /	<u> </u>
	Физически	е величины
	1)проекция скорости	
	2)проекция ускорения	
	3)модуль	скорости
	шарика	

- 4) координата шарика
- 18. Шарик брошен вертикально вверх с начальной скоростью υ (см. рисунок). Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут

представлять $(t_0$ - время полета).

К каждой позиции первого столбика подберите соответствующую позицию второго столбика. Цифры могут повторяться.

Физические величины

- 1) проекция ускорения шарика
- 2)модуль скорости шарика
- 3)координата шарика
- 4)проекция скорости