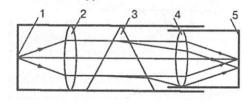
Физика 11.1


Строение атома. Атомное ядро. (часть 1) Излучения и спектры. Радиоактивность. Законы радиоактивности. Световые кванты. Состав атомного ядра. Цепная ядерная реакция. Элементы квантовой физики.

ИЗЛУЧЕНИЯ И СПЕКТРЫ

- 1. Излучению света атомами предшествует сообщение им некоторой энергии, иначе говоря, атомы предварительно возбуждаются, что связано с изменениями в строении их электронной оболочки. Каков процесс возбуждения при тепловом излучении?
- 1) атомы вещества возбуждаются, поглощая часть энергии, выделяющейся при реакции
- 2) за счет теплообмена увеличивается средняя кинетическая энергия частиц, и при столкновении атомы возбуждаются
- 3) атомы вещества возбуждаются, поглощая энергию падающего на них света
- 4)быстрые заряженные частицы (например, электроны) при столкновении с атомами отдают им кинетическую энергию
- 2. Характер линейчатого спектра вещества определяется
- 1) только способом возбуждения свечения атомов
- 2)строением атомов и способом возбуждения их свечения
- 3) только характером взаимодействия атомов друг с другом
- 4) строением атомов, движением электронов в них
 - 3. Спектральным анализом называется
- 1) метод диагностики процентного состава вещества
- 2)метод определения вида спектра
- 3) способ возбуждения атома
- 4) метод определения химического состава вещества по его спектру
- 4. Вещество в газообразном атомарном состоянии дает 1) полосатый спектр излучения 2) сплошной спектр поглощения

- 3)непрерывный спектр излучения
- 4)линейчатый спектр излучения 5. На рисунке показана схема устройства спектрографа.

Элемент спектрографа,

осуществляющий превращение расходящегося светового пучка в параллельный, обозначен цифрой

- 4)1;5 1)2 **2**)3 **3**)1:3
- 6. На рисунке приведены спектр поглощения неизвестного газа, спектры поглощения атомов гелия и натрия. Что можно сказать о химическом составе

газа?

1) газ состоит только из атомов гелия

- 2) газ состоит только из атомов натрия
- 3) газ состоит только из атомов гелия и натрия
- 4) газ состоит из атомов гелия, натрия и еще какого-то другого вещества
- 7. Степень нагретости тела (температуру раскаленного металла) кузнецы определяли по цвету. Металл имеет высокую температуру, когда он раскален до
- 1)белого цвета

3) желтого цвета

2) красного цвета

- 4) фиолетового цвета
- 8. Инфракрасное излучение имеет длину волны
- **1**)больше 7,6·10⁻⁷м

3) меньше 10⁻⁹ м

2) меньше 10⁻⁸м

- **4**) меньше 4· 10⁻⁷ м
- 9. Излучению света атомами предшествует сообщение им некоторой энергии, иначе говоря, атомы предварительно возбуждаются, что связано с изменениями в строении их электронной оболочки. Каков процесс возбуждения при электролюминесценции?
- 1) атомы вещества возбуждаются, поглощая часть энергии, выделяющейся при реакции

- 2) за счет теплообмена увеличивается средняя кинетическая энергия частиц, и при столкновении атомы возбуждаются
- 3) атомы вещества возбуждаются, поглощая энергию падающего на них света
- 4)быстрые заряженные частицы (например, электроны) при столкновении с атомами отдают им кинетическую энергию
 - 10. Из предложенных ответов выберите неверный.
- 1) по наличию в спектре определенных спектральных линий устанавливают присутствие элемента в изучаемой пробе
- 2) газ наиболее интенсивно поглощает свет тех частот, которые он излучает
- 3) при излучении происходит обращение линий спектра поглощения: на месте темных вспыхивают яркие линии
- 4) газ наиболее интенсивно излучает свет тех частот, которые он не поглощает
- **11.** Какой спектр можно наблюдать с помощью спектроскопа от раскаленной спирали электрической лампочки?
- 1) сплошной

3) спектр поглощения

2)полосатый

- 4) линейчатый
- **12.** Почему в спектре поглощения одного и того же химического элемента темные линии точно расположены в местах цветных линий линейчатого спектра излучения?
- 1) атомы каждого химического элемента излучают лучи одинаковой длины
- 2) атомы каждого химического элемента поглощают те лучи спектра, в которых частота излучения больше, чем они излучают
- 3) атомы каждого химического элемента поглощают только те

лучи, которые они сами излучают

4) ответ неоднозначен

обозначенного цифрой

13. На рисунке показана схема устройства спектрографа. Параллельные лучи на экране фокусируются с

- **1**) 2 **2**) 3 **3**)4 **4**)1;5
- **14.** На рисунке приведены спектр поглощения неизвестного газа и спектры поглощения паров известных металлов. По спектрам

			Sr
	\blacksquare	П	Газ
			Ca
			Na

можно утверждать, что неизвестный газ содержит атомы

- 1) только стронция и кальция 3) только стронция, натрия и кальция
- **2**)только натрия и стронция **4**) стронция, натрия и кальция и другого вещества
- **15.** Что определяют по линиям поглощения солнечного спектра?
- 1)химический состав атмосферы 2) состав глубинных слоев Солнца
- 3) химический состав атмосферы и глубинных слоев Солнца
- 4) температуру Солнца
- **16.** Какое излучение из перечисленных ниже имеет самую большую частоту?
- 1) радиоволны
- 3) инфракрасные лучи
- 2)видимый свет
- 4) рентгеновские лучи

Часть 2

17. Установите соответствие между видом излучения и вызывающей его причиной.

Причина

- А) бомбардировка твердого тела электронами
- Б) химические реакции, идущие с выделением энергии
- В) поглощение падающего света

Вид излучения

- 1)фотолюминисценция
- 3) хемилюминисценция
- 2) катодолюминисценция
- 4) тепловое
- **18.** Установите соответствие между электромагнитным излучением и частотой.

Частота Электромагнитное излучение

- А) инфракрасное
- **1**) 7.5· 10¹⁴ Γιι
- **Б)** ультрафиолетовое
- **2**) 10¹² Γιι

В) рентгеновское

- **3**)3· 10²⁰ Гц
- 19. Установите соответствие между электромагнитным излучением и длиной волны.

Электромагнитное излучение

Длина

А) видимое

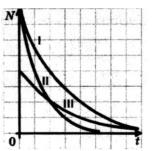
- 1) $4 \cdot 10^{-7}$ M
- **Б)** ультрафиолетовое
- **2**) 10⁻¹² м

В) рентгеновское

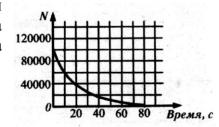
- **3**) 8⋅ 10⁻⁷ м
- 20. Установите соответствие между видом излучения и вызывающей его причиной.

Причина

- А) химические реакции, идущие с выделением энергии
- Б) бомбардировка твердого тела электронами
- В) увеличивается средняя кинетическая энергия частиц, и при столкновении атомы возбуждаются


Вид излучения

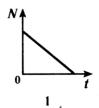
- 1) фотолюминесценция
- 3) хемилюминесценция
- 2) катодолюминесценция
- 4) тепловое

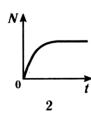

РАДИОАКТИВНОСТЬ. ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ЯДЕРНЫЕ РЕАКЦИИ

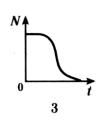
Часть 1

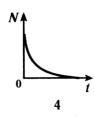
- 1. Радиоактивным излучением является
- 1) свечение фосфора
- 2) излучение энергии атомом при переходе из одного состояния в другое
- 3) электромагнитное
- излучение,
- вызывающее ядерную реакцию
- 4) излучение, сопровождающее α-распад полония

- **2.** Ha рисунке приведена зависимость нераспавшихся числа ядер времени процессе радиоактивного распада ДЛЯ трех изотопов. Пля полукакого ИЗ них период распада минимален?
- 1)I 3)III
- **2**) II 4) у всех одинаков
- 3. Период полураспада ядер атомов некоторого вещества составляет 45 минут. Это означает, что
- 1) за 45 минут атомный номер каждого атома уменьшается вдвое
- 2) каждые 45 минут распадается один атом
- 3) половина изначально имеющихся атомов распадется за 45 минут
- 4)все изначально имевшиеся атомы распадутся через 45 минут
- 4. Какая доля радиоактивных атомов распадется через интервал времени, равный двум периодам полураспада?
- **1**)25% 2) 50% 3)75% 4) все атомы распадутся
- 5. Дан график зависимости числа нераспавшихся ядер изотопа от времени. Период полураспада этого изотопа равен
 - **1**) 10c
- 3) 20 c
- **2**) 15 c
- 4) 25 c


- 6. Какое уравнение противоречит закону сохранения массового числа в ядерных реакциях?
- 1) ${}^{12}N \rightarrow {}^{12}_{6}C + {}^{0}_{-1}e$
- 2) ${}_{3}^{6}Li+{}_{1}^{1}p \rightarrow {}_{2}^{4}He+{}_{2}^{3}He$ 4) ${}_{4}^{9}Be+{}_{1}^{2}H \rightarrow {}_{5}^{10}B+{}_{0}^{1}n$
- 3) ${}_{6}^{12}C \rightarrow {}_{7}^{10}N + {}_{-1}^{0}e$
- **7.** При бомбардировке ядер изотопа азота $^{^{14}N}$ нейтронами образуется изотоп бора $^{^{11}B}$ Какая еще частица образуется в этой ядерной реакции?
 - **1**)протон


- 3) нейтрон
- 2)α-частица
- 4) 2 нейтрона


8. Укажите второй продукт ядерной реакции ${}_{3}^{7}Li+{}_{1}^{1}H \rightarrow {}_{2}^{4}He+X$


 $_{\parallel 2}^{4}He$

- 2)p
- 9. Изменение атомных ядер при их взаимодействии с элементарными частицами или друг с другом называется
 - 1) радиоактивностью
- 3) химической реакцией
- 2) ядерной реакцией
- 4) синтезом ядер
- 10. Какой из графиков соответствует зависимости числа N нераспавшихся ядер радиоактивного образца от времени t?

- **1**)1 **2**)2
- 11. Закон радиоактивного распада записывается формулой

 $N = N_0 \cdot 2^{-\frac{\cdot}{T}}$

3)
$$N = N_0 \cdot e^{-\frac{t}{T}}$$
4) $N = N_0 \cdot e^{\frac{t}{T}}$

2) $N = N_0 \cdot 2^{\frac{t}{T}}$

$$N = N_0 \cdot e^{\frac{1}{T}}$$

- 12. Какая доля радиоактивных атомов не распадется через интервал времени, равный двум периодам полураспада?
- 1) 25%
- 3)75%
- **2**) 50% **4**) все атомы распадутся
- Дан график зависимости числа нераспавшихся ядер изотопа от времени. Время, в течение которого число нераспавшихся ядер изотопа уменьшится в 5 раз, равно
- 1) 15 c
- **3**) 25c
- **2**) 20 c
- **4)** 30 c

- 14. Какое уравнение противоречит закону сохранения зарядового числа в ядерных реакциях?
- 1) ${}^{12}_{7}N \rightarrow {}^{12}_{6}C + {}^{0}_{-1}e$
- 2) ${}_{3}^{6}Li+{}_{1}^{11}p\rightarrow {}_{2}^{4}He+{}_{2}^{3}He$
- 3) ${}_{6}^{11}C \rightarrow {}_{7}^{10}N + {}_{-1}^{0}e$ 4) ${}_{4}^{9}Be + {}_{1}^{2}H \rightarrow {}_{7}^{10}N + {}_{0}^{1}n$
- **15.** При захвате нейтрона ядром $^{27}_{13}Al$ образуется радиоактивный изотоп $^{^{24}Na}$. При этом ядерном превращении испускается
- 1) нейтрон

3) электрон

2) α-частица

- **4**) протон
- 16. Укажите второй продукт ядерной реакции $_{2}^{6}Li+_{1}^{1}H\rightarrow_{2}^{3}He+X$
- 1) $_{2}^{4}He$ 2) p 3) $_{-1}^{0}e$ 4) n

3)3_{4acTb} 2

Установите соответствие между нуклонов, протонов и нейтронов в ядре X: ${}^9_4 Be + {}^2_1 H \to X + {}^1_0 n$

Частица

Количество

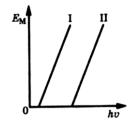
- **A)** нуклон
- 1) 5
- Б) протон
- **2**)7
- В) нейтрон
- 3)10
- **4**) 4
- Установите соответствие между количеством нуклонов, протонов и нейтронов в ядре X : ${}^{11}_{6}C \to X + {}^{0}_{-1}e$ Количество Частица
 - **A)** нуклон
- **1**)11
- Б) протон
- **2**)7
- **В**) нейтрон
- **3)** 10

Часть 3

- 19. Радиоактивный изотоп полония имеет период полураспада 3,1 минуты. Детектор, расположенный вблизи источника, зафиксировал в первую секунду 2400 распадов. Сколько распадов в секунду зафиксировал детектор через 9,3 минут?
- 20. Имеется 8 кг радиоактивного цезия. Определите массу нераспавшегося цезия после 135 лет радиоактивного распада, если период полураспада его равен 27 годам. Ответ запишите в граммах.

СВЕТОВЫЕ КВАНТЫ

Часть 1


- 1. Понятие квант энергии было введено впервые в физику лля объяснения
- 1) законов фотоэффекта
- 2) давления света
- 3) закономерностей черно-белой фотографии
- 4) законов излучения разогретых твердых тел
- 2. Из приведенных формул выберите формулу уравнения Эйнштейна для внешнего фотоэффекта.

$$2 v = A_{\text{\tiny GLIX}} + \frac{mv^2}{2}$$

3)
$$hv = A_{\theta b X} + \lambda$$
 4) $v = eU_3$

$$V = eU_3$$

3. На рисунке приведены графики максимальной энергии зависимости фотоэлектронов от энергии падающих на фотокатод фотонов. В каком случае материал катода фотоэлемента имеет большую работу выхода?

- **1**)I
- 3) одинаковую
- **2**)II
- 4) нельзя ответить однозначно

- 4. Как изменится скорость фотоэлектронов при уменьшении длины волны облучающего света?
- 1) уменьшится
- 3) увеличится
- 2)не изменится
- 4) зависит от энергии света
- 5. Металлическая пластина освещается светом длиной волны 420 нм. Работа выхода электрона с поверхности пластины равна 3,2 · 10-19 Дж. При какой запирающей разности потенциалов прекратится фототок?
- **1**)0,34 B

- **3**) 0,95 B
- **2**)0,68 B
- **4)** 1,86 B
- 6. Чему равен импульс, полученный атомом при поглощении фотона частотой 1,5 · 10¹⁴ Гц?

- 1)5·10⁻²⁹ κ Γ· M/c
 2)3,3·10⁻²⁸ κ Γ· M/c
 4)3,3·10⁶ κ Γ· M/c
- 7. Наибольшая длина волны света, при которой происходит фотоэффект для вольфрама, 0,275 мкм. Найдите работу выхода электронов из вольфрама.
- **1**)72·10⁻¹⁹ Дж
- **3**) 0,72·10⁻¹⁹ Дж
- **2**)7,2·10⁻¹⁹ Дж
- **4**) 0,6·10⁻¹⁹ Дж
- 8. Если лазер мощностью Р испускает N фотонов за одну секунду, то длина волны излучения лазера равна

1)
$$\frac{hc}{NP}$$
 2) $\frac{NP}{hc}$ 3) $\frac{hcP}{N}$ $\frac{hcN}{4}$

$$3\frac{hcP}{N}$$

9. По какой формуле можно рассчитать энергию фотона с частотой

1)
$$E = h vc$$

1)
$$E = hvc$$
 2) $E = \frac{hv}{c}$ 3 $E = hv$

$$3E = hv$$

$$\mathbf{A} \neq \frac{h v}{c^2}$$

- 10. Фотоэффект это
- 1) синтез глюкозы в растениях под действием солнечного света
- 2)выбивание электронов с поверхности металла при освещении его светом
- 3) свечение металлов при пропускании по ним тока
- 4) нагрев веществ при их освещении

- **11.** На рисунке представлен график зависимости силы фототока в фотоэлементе от приложенного к нему напряжения. Если начать уменьшать частоту падающего на катод света (при той же интенсивности), то
- 1) нижняя часть графика, соответствующая запирающему напряжению, сместится влево
- 2)нижняя часть графика, соответствующая запирающему напряжению, сместится вправо
- 3) верхняя часть графика, показывающая силу тока насыщения, сместится вверх
- 4) верхняя часть графика, показывающая силу тока насыщения, сместится вниз
- **12.** Как изменится максимальная кинетическая энергия электронов, вырываемых с поверхности катода при поглощении ими излучения, при увеличении частоты в 2 раза?
- 1)не изменится
- 3) увеличится более чем в 2 раза
- 2) увеличится в 2 раза
- 4) увеличится менее чем в 2 раза
- **13.** При облучении вещества с работой выхода 2 эВ фотонами с энергией 5 эВ задерживающее напряжение равно **1**)3 эВ **2**)3 В **3**)4 эВ **4**) 7 В
- **14.** Покоящийся атом поглотил фотон с энергией $1,2\cdot 10^{-17}$ Дж. При этом импульс атома
- 1) не изменился
- **2**) стал равным 1,2·10⁻¹⁷ кг· м/с
- **3**)стал равным $4 \cdot 10^{-26}$ кг· м/с
- **4**) стал равным 3,6·10⁻⁹ кг· м/с
- **15.** Красная граница фотоэффекта для калия соответствует длине волны 0,6 мкм. Определите приблизительно работу выхода электронов из калия.
- **1**)33,1·10⁻²⁰ Дж
- **3**)24,6·10⁻¹⁸ Дж
- **2**)75,6·10⁻¹⁹ Дж
- **4**)15,9·10⁻²¹ Дж

- **16.** Лазерный луч, падая нормально на зеркало, полностью от него отражается. Если за время t лазер излучает энергию Ето импульс, получаемый зеркалом в 1 секунду, равен
 - 1) $\frac{2E}{ct}$
 - 2) $\frac{E}{ct}$
 - 3) $\frac{2E}{hct}$
 - 4) $\frac{E}{2ct}$

Часть 2

17. Установите соответствие между физической величиной и формулой, по которой ее можно рассчитать.

Физическая величина

- А) энергия фотона
- Б) красная граница фотоэффекта
- В) сила тока насыщения

Формула

1)
$$\frac{hc}{\lambda}$$
 2) $\frac{ne}{t}$ 3) $\frac{A_{\text{GbLX}}}{hc}$ 4) $\frac{A_{\text{GbLX}}}{h}$

18. Установите соответствие между физической величиной и формулой, по которой ее можно рассчитать.

Физическая величина

- А) энергия фотона
- Б) максимальная кинетическая энергия фотона
- В) красная граница фотоэффекта

Формула

1) $\frac{hc}{A_{\text{Gb,XL}}}$ 2) $\frac{A_{\text{Gb,XL}}}{hc}$ 3) hv 4) eU_{3}

Часть 3

- **19.** Когда частота падающего на металл света увеличилась в 2 раза, задерживающее напряжение для фотоэлектронов увеличивается в 3 раза. Частота первоначально падающего света $1,2\cdot 10^{15}$ Гц. Определите длину волны света, соответствующую красной границе фотоэффекта для этого металла. Ответ выразите в нм.
- **20.** При освещении ультрафиолетовым светом с частотой 1015 Гц металлического проводника с работой выхода 3 эВ выбиваются электроны. Какова максимальная кинетическая энергия выбиваемых электронов? Ответ выразите в эВ.

СОСТАВ АТОМНОГО ЯДРА. ИЗОТОПЫ, ЯДЕРНЫЕ СИЛЫ, ЭНЕРГИЯ СВЯЗИ АТОМНОГО ЯДРА

Часть 1

- 1. 1. Из каких частиц состоят атомные ядра?
- 1) из протонов 3) из протонов и электронов
- 2) из нейтронов 4) из протонов и нейтронов
- 2. Если в ядре изотопа гелия все протоны заменить нейтронами, а нейтроны протонами, то получится ядро
- $1)^{\frac{2}{3}}He \ 2)^{\frac{2}{1}}H \ 3)^{\frac{3}{1}}H \ 4)^{\frac{4}{2}}He$
 - **3.** Протон был открыт
- 1) при бомбардировке ядер B, F, Mg α частицами
- 2) при бомбардировке ядра берилия
- 3) при исследовании естественной радиоактивности
- 4) при исследовании фотоэффекта

- 4. Изотопы отличаются друг от друга
- 1)числом протонов
- 2) числом нейтронов
- 3) числом электронов
- 4) числом α-частиц
 - 5. Радиоактивные изотопы получают в результате
- 1)химических реакций
- 2) облучения а-частицами, ү-излучения, нейтронного облучения
- 3) химических реакций и нейтронного облучения
- 4) однозначного ответа нет
 - 6. Взаимодействие нуклонов ядра обусловлено
- 1) электромагнитными силами
- 2) силами слабого взаимодействия
- 3) гравитационными силами
- 4) ядерными силами
- **7.** Между протонами в ядре действуют кулоновские F_K , гравитационные F_Γ и ядерные $F_{\mathfrak{g}}$ силы. Каковы соотношения между модулями этих сил?
- 1) $F_{\mathcal{A}} > F_{\mathcal{K}} > > F_{\Gamma}$ 3) $F_{\mathcal{A}} \approx F_{\mathcal{K}} \approx F_{\Gamma}$
- $2)F_{\mathcal{A}} \approx F_{\mathcal{K}} > > F_{\mathcal{\Gamma}} \quad 4)F_{\mathcal{K}} > F_{\mathcal{A}} > > F_{\mathcal{\Gamma}}$
 - **8.** Определите энергию связи ядра изотопа лития ${}^{7}_{3}Li$.
- **1**)38,8M₃B 3)35,5M₃B
- **2**)36,6M₃B 4)37,7M₃B
- **9.** Ядро атома можно однозначно описать с помощью массового числа A и зарядового числа Z. Сколько протонов входит в состав ядра?
- 1) Z 2) A Z 3) A + Z 4) Z A
 - **10.** Сколько протонов и нейтронов в ядре $^{^{34}}_{11}Na$
- 1) протонов 24, нейтронов 11
- 2) протонов 11, нейтронов 24
- 3)протонов 11, нейтронов 13
- 4)протонов 13, нейтронов 11
 - 11. Электрон был открыт
 - 1) при бомбардировке ядер В, F, M g а-частицами

- 2) при бомбардировке ядра берилия
- 3) при исследовании естественной радиоактивности
- 4) при исследовании фотоэффекта
- 12. Изотопы содержат одинаковое число
- **1**)нейтронов
- 3)протонов
- **2**)нуклонов
- 4) α-частиц
- 13. Какими способами получают радиоактивные изотопы химических элементов?
- 1) только нейтронным облучением
- 2) облучением α-частицами, γ-излучением, нейтронным облучением
- 3) только облучением а-частицами
- 4) однозначного ответа нет
- 14. Протоны и нейтроны в ядре удерживаются силами
- 1) кулоновского взаимодействия 3) трения
- 2)упругости

- 4) сильного взаимодействия
- 15. Сравните силы ядерного притяжения между двумя протонами F_{pp} , двумя нейтронами F_{nn} и между протоном и нейтроном F_{pn} .
- 1) $F_{nn} > F_{pn} > F_{pp}$
- 3) $F_{nn} \approx F_{pn} > F_{pp}$
- 2) $F_{nn} \approx F_{pn} \approx F_{pp}$ 4) $F_{nn} < F_{pn} < F_{pp}$
- 16. Определите удельную энергию связи нуклонов в ядре кислорода ${}^{16}_{8}O$.
- **1**)7,98 M₃B/a.e.m.
- 3) 8,12 МэВ/а.е.м.
- **2**)7,65 M₃B/a.e.m.
- 4) 8,56 МэВ/а.е.м.

Часть 2

17. Установите соответствие между количеством нуклонов, протонов и нейтронов в атоме натрия ^{24}Na .

Частица	Количество
---------	------------

А)нуклон 1)24 Б) протон 2) 11

В)нейтрон	3)35
	4) 13

18. Установите соответствие между количеством нуклонов, протонов и нейтронов в ядре магния $^{27}_{12}Mg$.

Частица	Количество
А)нуклон	1)12
Б)протон	2)15
В)нейтрон	3)27

Часть 3

- 19. Вычислите дефект массы, приходящийся на один нуклон ядра урана $^{235}_{92}U$.
 - **20.** Вычислите энергию связи для ядра атома лития $\sqrt[7]{L}i$.

ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ. ЯДЕРНЫЙ РЕАКТОР. ТЕРМОЯДЕРНАЯ РЕАКЦИЯ. ЭЛЕМЕНТАРНЫЕ

Часть 1

- 1. Ядерная реакция деления тяжелых ядер нейтронами, в результате которой число нейтронов возрастает и поэтому может возникнуть самоподдерживающийся процесс деления, называется
- 1) эндотермической реакцией
 - 3) термоядерной реакцией
- 2) экзотермической реакцией
- 4) цепной ядерной реакцией
- 2. Ядерные реакторы на быстрых нейтронах называют реакторами-размножителями. Что размножают такие реакторы? 1) нейтроны
- 2) разгоняют нейтроны до таких скоростей, при которых они могут осуществлять цепные ядерные реакции, т.е. размножаться 3) ядерное горючее, получая на один килограмм израсходованного горючего более килограмма нового ядерного горючего

- **4**)быстрые нейтроны при столкновении с медленными ускоряют их, и общее число нейтронов, способных осуществлять цепную ядерную реакцию, увеличивается
- **3.** Если масса продуктов ядерной реакции больше массы исходных частиц, то такая реакция
- 1) не может быть осуществлена в принципе
- 2) идет самопроизвольно
- 3) может быть реализована за счет кинетической энергии исходных частиц
- 4) ответ неоднозначен
- **4.** Какие вещества из перечисленных ниже используются в качестве топлива AЭС?

А. уран В. графит

Б. каменный уголь Г. кадмий

1) только A 3) A и Г

2)только Б 4) А, В и Г

- **5.** В уране-235 может происходить цепная ядерная реакция. Выберите правильное утверждение.
- 1) при цепной ядерной реакции деление ядра происходит в результате попадания в него протона
- 2) при цепной ядерной реакции деление ядра происходит в результате попадания в него нейтрона
- 3) в результате деления ядра образуются только электроны
- 4) нет правильного ответа
- **6.** При каком значении k (коэффициент размножения нейтронов) идет цепная ядерная реакция в атомной бомбе?

1)k > 1

3) k = 1

2)k<1

- 4) в каждом случае по-разному
- **7.** Какие вещества из перечисленных ниже могут быть использованы в ядерных реакторах в качестве замедлителя?

А. графит В. тяжелая вода

Б. кадмий Г. бор

1) АиВ
 2) БиГ
 3) АиБ
 4) ВиГ

8. Протон состоит из

- 1) нейтрона, позитрона и нейтрино
- **2**)мезонов
- 3)кварков
- 4)не имеет составных частей
- **9.** Реакция синтеза легких атомных ядер в более тяжелые, происходящие при сверхвысоких температурах, называется
- 1) эндотермической реакцией
- 2) экзотермической реакцией
- 3) термоядерной реакцией
- 4) цепной ядерной реакцией
- **10.** Какие из перечисленных ниже условий являются обязательными для осуществления цепной ядерной реакции деления ядер урана?

А.освобождение при каждом делении ядра двух-трех нейтронов

- Б. наличие достаточно большого количества урана
- В. высокая температура
- 1) только A 2) только B 3) только Б 4)A и Б
- **11.** Регулирование скорости ядерного деления тяжелых атомов в ядерных реакторах АЭС осуществляется
- 1) за счет увеличения отпуска электроэнергии потребителям
- 2) за счет поглощения нейтронов при опускании стержней с поглотителями
- 3) за счет увеличения теплоотвода при увеличении скорости теплоносителя
- 4) за счет уменьшения массы ядерного топлива в активной зоне при вынимании стержней с топливом
- **12.** Какие вещества из перечисленных ниже могут быть использованы в качестве теплоносителей?

А. жидкий натрий Б. вода

- 1) только A 2) только Б 3) A и Б 4) ни A, ни Б
- 13. В обогащенном уране происходит цепная ядерная реакция деления. Выберите правильное утверждение.
- 1) ядра урана делятся на отдельные протоны и нейтроны

2)в результате деления ядра урана образуются два крупных «осколка» и несколько нейтронов

3) цепную ядерную реакцию вызывает у-излучение

4) цепную ядерную реакцию вызывают быстрые протоны

14. При каком значении к (коэффициент размножения нейтронов) идет цепная ядерная реакция в ядерном реакторе?

1) k'> 1 2) k < 13) k = 1 4) $k \ge 1$

15. Критическая масса определяется

А. замедлителем нейтронов Б. типом ядерного горючего

 только А
 только Б 3) А и Б 4) ни А, ни Б

16. При каких ядерных процессах возникает антинейтрино?

1) при фраспаде 3) при излучении у-квантов при В-распаде 4) при любых ядерных превращениях

Часть 2

17. Установите соответствие между ядерной реакцией и ее видом.

Реакция

Bud

$$A) \xrightarrow{235} U + {}_{0}^{1} n \rightarrow \xrightarrow{56}^{144} Ba + \underbrace{}_{36}^{89} Kr + 3_{0}^{1} n$$

1) реакция деления

$$\begin{array}{ccc}
& & & & & & & & & & & & & \\
E & & & & & & & & & & & \\
E & & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & & \\
E & & & & & & & & & \\
E & & & & & & & & & \\
E & & & & & & & & & \\
E & & & & & & & & & \\
E & & & & & & & & \\
E & & & & & & & & \\
E & & & & & & & & \\
E & & & & & & & & \\
E & & & & & & & & \\
E & & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & & & & \\
E & & & & \\
E & & & & \\
E & & & & \\
E & & & & \\
E & & & \\
E & & & & \\
E & & \\
E$$

2) α-распад

B)
$${}^{226}_{88}Ra \rightarrow {}^{222}_{86}Rn + {}^{4}_{2}He$$

3) β- распад

4) реакция синтеза

Установите соответствие между ядерной реакцией и ее видом.

Реакция

Buð

A)
$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}He$$

1) реакция деления

$$60 C_{27} C_{0} \rightarrow {}^{60}_{28} N_{i} + {}^{0}_{-1} C_{0}$$

2) распад

A)
$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

B) ${}_{27}^{60}Co \rightarrow {}_{28}^{60}Ni + {}_{-1}^{0}e$
B) ${}_{92}^{235}U + {}_{0}^{1}n \rightarrow {}_{56}^{144}Ba + {}_{36}^{89}Kr + 3{}_{0}^{1}n$

3) В-распад

4) реакция синтеза

Часть 3

- При делении ядра урана-235 в результате захвата медленного нейтрона образуются ксенон-139 и стронций-94. Одновременно выделяются три нейтрона. Найдите энергию (в МэВ), освобождающуюся при одном акте деления.
- 20. При делении одного ядра урана-235 на два осколка выделяется около 200 МэВ энергии. Сколько энергии (в Дж) освобождается при сжигании в ядерном реакторе 20 г этого изотопа?

ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ

1. Какое из приведенных ниже выражений наиболее точно определяет понятие внешний фотоэффект?

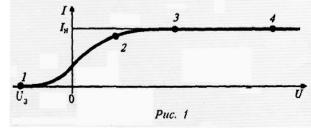
А.Испускание заряженных частиц веществом под действием света.

Б. Испускание электронов веществом в результате нагревания.

В. Вырывание электронов из вещества под действием света.

Г. Увеличение электрической проводимости вещества под действием света.

2. Как изменится абсолютная величина заряда цинковой пластины, помещенной в вакуумную камеру, после освещения ее ультрафиолетовым излучением через кварцевое стекло?


Пластина заряжена отрицательно.

А. Увеличится.

Б. Уменышится.

В. Не изменится.

3. Какое ИЗ приведенных ниже

выражений позволяет рассчитать кинетическую энергию фотоэлектронов?

6. $A_B + E_K$: **8.** $hv - A_B$ **A.** hv;

 Γ . hv - E_K ; Д. (hv - E_K)/h.

4. При каком условии возможен фотоэффект?

 $A.hv > A_B$ $B.hv < A_B$;

- В. При любом соотношении hv и A_B
- **5.** Укажите вещество, для которого возможен фотоэффект под действием фотонов с энергией

2,4·10⁻¹⁹ Дж:

- **А.**Цезий ($A_B = 3.01 \cdot 10^{-19} \text{ Дж}$).
- **Б.** Оксид бария ($A_B = 1.6 \cdot 10^{-19} \, \text{Дж}$).
- **В.**Калий ($A_B = 3.5 \cdot 10^{-19} Дж$).
- Γ . Литий ($A_B = 3.8 \cdot 10^{-19} \text{ Дж}$).
- Д. Серебро ($A_B = 6.9 \cdot 10^{-19} \, \text{Дж}$).
- **6.** Чему равна максимальная кинетическая энергия электронов, вырываемых из металла под действием фотонов с энергией $8,0\cdot 10^{-19}$ Дж, если работа выхода составляет $2,0\cdot 10^{-19}$ Дж
 - **А.** 8 · 10 ⁻¹⁹Дж; **Б.** 2,0 · 10 ⁻¹⁹Дж **В.** 10 · 10 ⁻¹⁹ Дж;
 - **Г.** 6 · 10 ⁻¹⁹Дж; **Д.** О Дж;
- **7.** Укажите, что является причиной U_3 выцветания тканей под действием солнечных лучей?
- А.Вырывание электронов из вещества.
- Б. Разрыв ковалентных связей.
- В.Передача поверхности импульсов фотонов.
- Г. Разрушение молекул вещества.
- Д. Ионизация молекул вещества.
- **8.** Какие свойства электромагнитного излучения проявляются сильнее при увеличении частоты?
- А.Волновые.
- Б. Квантовые.
- В. Как волновые, так и квантовые.
- Г. Проявление свойств не зависит от частоты.
- **9.** Как изменится сила тока насыщения в опыте по фотоэффекту при увеличении интенсивности света?
 - А. Увеличится.
- **Б.** Уменьшится. **В.** Не изменится.

- **10.** Как изменится работа выхода электрона из вещества при уменьшении частоты облучения в 3 раза?
- А. Увеличится в 3 раза.
- **Б.** Увеличится в 9 раз.
- В. Уменьшится в 3 раза.
- Г. Уменьшится в 9 раз.
- Д. Не изменится.

Puc. 2

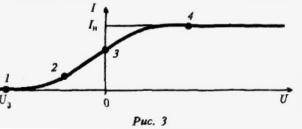
11. Какое из выражений определяет энергию фотона?

$$\mathbf{A}_{\underline{m}g^2} \qquad \underline{h}_{\underline{v}} \qquad \underline{h}_{\underline{v}} \qquad \underline{h}_{\underline{v}} \qquad \underline{h}_{\underline{v}} \qquad \underline{h}_{\underline{\lambda}} \qquad \underline{\Gamma}_{\underline{h}\underline{c}} \qquad \underline{\mathcal{A}}$$

- **12.** Какая точка вольт-амперной характеристики вакуумного фотоэлемента (рис. 1) соответствует силе тока, при которой только часть электронов, вырываемых светом с поверхности металла, достигает анода?
- **А.** Точка 1; **Б.** Точка 2;
- - **13.** Чему равна длина волны излучения, вызывающего фотоэффект, если максимальная кинетическая энергия фотоэлектронов
 - $4,5\cdot 10^{-19}$ Дж, а работа выхода для этого металла составляет $3,5\cdot 10^{-19}$ Дж?
 - **A.** $1,2 \cdot 10^{-7}$ M. **B.** $2,0 \cdot 10^{-7}$ M;
 - **B.** 2,5 · 10 ⁻⁷ M Γ . 4,4 · 10 ⁻⁷ M; Λ . 5,7 · 10 ⁻⁷ M
- **14.** Какой частоты свет излучает моно хроматический источник мощностью 40 Вт, если он за 1 с испускает $2 \cdot 10^{20}$ фотонов?
 - **А.** $3 \cdot 10^{-14}$ Гц. **Б.** $6 \cdot 10^{-14}$ Гц; **В.** $3 \cdot 10^{-17}$ Гц
 - Γ . 6 · 10 ¹⁷ Γ ц; Д. 3 · 10 ⁻¹⁴ Γ ц; Γ . 6 · 10 ⁻¹⁴ Γ ц.
- **15.** На рис. 2 изображены графики зависимости абсолютной величины задерживающего напряжения от частоты облучения для двух материалов. Сравните значения работы выхода у этих материалов.
 - А. Работа выхода одинакова.
- **Б.** Работа выхода у первого материала больше, чем у второго.

- В. Работа выхода у второго материала больше, чем у первого.
- **16.** Какое из приведенных ниже выражений наиболее точно определяет понятие работы выхода?
 - А. Энергия необходимая для отрыва электрона от атома;
 - Б. Кинетическая энергия свободного электрона в веществе;
- В. Энергия, необходимая свободному электрону для вылета из вещества;
- Г. Энергия, необходимая свободному электрону для вылета из вещества и приобретения некоторой скорости.
- **17.** Как изменится абсолютная величина заряда цинковой пластины после ее облучения ультрафиолетовым излучением? Пластина заряжена отрицательно.
 - А. Увеличится.
 - Б. Уменьшится
 - **В.** Не изменится.
- 18. Какое из приведенных ниже выражений позволяет рассчитать энергию кванта излучения?
 - A. $A_B + E_K$; **6.** hv E_K ; **8.** hv A_B $\Gamma = \frac{m^{g^2}}{2}$ **11.** (hv E_K)/h.

 - 19. При каком условии возможен фотоэффект?
 - **А.** $v > v_{min}$: где v_{min} красная граница фотоэффекта;
 - $\mathbf{F} \cdot \mathbf{v} < \mathbf{v}_{min}$
 - **В.** При любом соотношении ν и ν_{min}
- Укажите с вещество, для которого возможен фотоэффект под действием фотонов с энергией $\bar{3}$,2·10 ⁻¹⁹ Дж:
 - **А.** Калий ($A_B = 3.5 \cdot 10^{-19} \, \text{Дж}$);
 - **Б.** Серебро (A $_{\rm B}$ = 6,9·10⁻¹⁹ Дж);
 - **В.** Литий ($A_B = 3.8 \cdot 10^{-19} Дж);$
 - Γ . Вольфрам $A_B = 7,2 \cdot 10^{-19} \text{Дж}$); Д. Цезий ($A_B =$ $3,0\cdot 10^{-19}$ Дж).
- 21. Чему равна максимальная кинетическая энергия электронов, вырываемых из металла под действием фотонов с

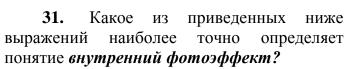

- энергией 8 ·10-19Дж, если работа выхода имеет такое же значение?
 - **А.** 10^{-19} Дж; **Б.** $8 \cdot 10^{-19}$ Дж; **В.** $16 \cdot 10^{-19}$ Дж;
 - **Г.** 64·10⁻¹⁹Дж: **Д.** 0 Дж
- Укажите, что является причиной увеличения электрической проводимости полупроводника под действием света?
- А. Разрушение молекул вещества;
- Б. Вырывание электронов из вещества;
- В. Разрыв ковалентных связей и образование свободных электронов и дырок;
- Г. Передача импульса фотонов поверхности;
- Д. Ионизация молекул вещества.
- 23. Какие свойства электромагнитного излучения проявляются сильнее при увеличении частоты?
- А. Волновые.
- **Б.** Квантовые.
- В. Как волновые, так и квантовые.
- 24. Как изменится количество фотоэлектронов в опыте по фотоэффекту при уменьшении интенсивности света?
 - А. Увеличился,
- Б. Уменьшится.
- В. Не изменится.
- Как изменится скорость фотоэлектронов увеличении интенсивности облучения в 2 раза?
 - А. Увеличится в 2 раза. Б. Увеличится в
 - 4 раза. **В.** Уменьшится в 2 раза. **Г.**

Уменьшится в 4 раза. Д. Не изменится.

- Какое из выражений определяет импульс фотона?
- **А.** hv; **Б.** $\frac{hc}{\lambda}$; **В.** $\frac{m\theta^2}{2}$; **Г.** $\frac{hv}{c^2}$; Д. $\frac{hv}{c}$ **27.** Какая точка вольт-амперной
- характеристики вакуумного фотоэлемента (рис. 3) соответствует силе тока, при которой все электроны, вырываемые светом с поверхности металла, достигают анода?

А.Точка 1. **Б.**Точка 2. **В.**Точка

- 3. Г.Точка 4.
- 28. Чему равна работа выхода, если излучение с длиной волны $2,5\cdot 10^{-7}$ м вызывает фотоэффект с максимальной кинетической энергией фотоэлектронов 4,0 · 10⁻¹⁹ Дж?

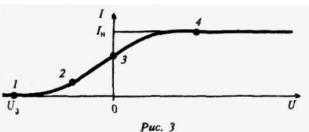


$$\cdot 10^{-19}$$
Дж; Д. 32 $\cdot 10^{-19}$ Дж.

29. Сколько фотонов за 1 с испускает источник света мощностью 40 Вт, если частота излучения 6 \cdot 10 ¹⁴ Гц?

A.
$$2 \cdot 10^{20}$$
; **B.** $2 \cdot 10^{19}$;

- 30. На рис.4 изображены графики зависимости кинетической энергии фотоэлектронов от частоты излучения для двух материалов. Сравните значение работы выхода у этих материалов.
- А. Работа выхода у первого материала больше, чем у второго;
- Б. Работа выхода у второго материала больше, чем у первого;
 - В. Работа выхода одинакова.



А. Вырывание электронов из вещества под действием света.

Б. Испускание электронов веществом в результате нагревания.

В. Увеличение электрической проводимости при облучении области р-п-перехода двух полупроводников.

Г.Увеличение электрической проводимости вещества в результате нагревания.

Puc. 4

В. Не изменится.

33. Какое из приведенных ниже выражений позволяет рассчитать работу выхода электрона из вещества?

ультрафиолетовыми лучами?

32. Как изменится положительный

заряд цинковой пластины, если ее освещать

A.
$$hv - A_B$$
; **B.** $hv - E_K$; **B.** $A_B + E_K$;

$$\Gamma$$
. (hv - E_K)/h Д. hv;

34. При каком условии возможен фотоэффект?

А. Увеличится.

Б. Уменьшится.

A.
$$v < A_B/h$$
; **B.** $v > A_B/h$;

В.При любом соотношении величин v и A_B/h

Укажите вещество, для которого возможен фотоэффект под действием фотонов с энергией 4,8·10-19 Дж:

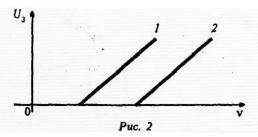
А.Платина (
$$A_B = 8.5 \cdot 10^{-19} \text{ Дж}$$
).

Б. Никель (
$$A_B = 7,7 \cdot 10^{-19} \text{ Дж}$$
).

В. Серебро (
$$A_B = 6.9 \cdot 10^{-19} \, \text{Дж}$$
).

$$\Gamma$$
. Алюминий ($A_B = 5.9 \cdot 10^{-19}$ Дж).

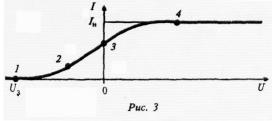
Д. Литий (
$$A_B = 3.8 \cdot 10^{-19}$$
Дж).


36. Чему равна энергия фотонов, фотоэффект, если вызывающих кинетическая энергия максимальная фотоэлектронов 4,5 ·10 ·19 Дж, а работа выхода составляет 3,5 · 10 ⁻¹⁹ Дж?

Укажите, что является причиной почернения

фотопластинки под действием света?

Б. Разрыв ковалентных связей.



- В. Разрушение молекул вещества.
- Г. Вырывание электронов из вещества.
- Д. Ионизация молекул вещества.
- **38.** Какие свойства электромагнитного излучения проявляются сильнее при уменьшении частоты?
- А.Волновые. Б. Квантовые.
- В. Как волновые, так и квантовые.
- Г. Проявление свойств не зависит от частоты.
- **39.** Как изменится кинетическая энергия фотоэлектронов при увеличении частоты облучающего света? **А.** Увеличится **Б.** Уменьшится **В.** Не изменится
- **40.** Как изменится работа выхода электрона из вещества при уменьшении частоты облучения в 2 раза?
 - А. Увеличится в 2 раза.
 - Б. Увеличится в 4 раза.
 - В. Уменьшится в 2 раза.
 - Г. Уменьшится в 4 раза.
 - Д. Не изменится.
 - 41. Какое из выражений определяет массу фотона?
 - **А.** hv, **Б.** hv/c. **В.** hv/c². Γ . hc/ λ . Д. mv²/2.
- **42.** Какая точка вольт-амперной характеристики вакуумного фотоэлемента (рис. 1) соответствует прекращению движения фотоэлектронов между электродами?
 - **А.**Точка 1.
 - **Б.** Точка 2.
 - **В.**Точка 3.
 - Г. Точка 4.
- **43.** Чему равна максимальная кинетическая энергия фотоэлектронов, если излучение длиной волны $2,5\cdot10^{-7}$ м вызывает фотоэффект в металле с работой выхода $2\cdot10^{-19}$ Дж?
 - **А.** $8 \cdot 10^{-19}$ Дж; **Б.** $2 \cdot 10^{-19}$ Дж; **В.** $10 \cdot 10^{-19}$ Дж;
 - **Г.** 6 · 10 ⁻¹⁹Дж; **Д.** ОДж.
- **44.** Сколько фотонов за 1 с испускает источник ультрафиолетового излучения мощностью 40 Вт, если частота излучения $3 \cdot 10^{15}$ Гц?

- **A.** 10^{17} ; **B.** $2 \cdot 10^{17}$; **B.** $2 \cdot 10^{19}$; **Г.** 10^{20} **Д.** $2 \cdot 10^{20}$.
- **45.** На рис. 2 изображены графики зависимости абсолютной величины задерживающего напряжения от частоты излучения для двух материалов. Сравните значения работы выхода фотоэлектронов у этих материалов.
- **А.** Работа выхода у первого материала меньше, чем у второго.
- **Б.** Работа выхода у второго материала меньше, чем у первого.
 - В. Работа выхода одинакова.
- **46.** Какое из приведенных ниже выражений наиболее точно определяет свойства *фотона?*
- **А.** Частица, движущаяся с большой скоростью и обладающая массой, зависящей от скорости;
- **Б.** Частица, движущаяся со скоростью света и обладающая отличной от нуля массой покоя;
- **В.** Частица, движущаяся с большой скоростью, масса покоя которой равна нулю;
- **Г.** Частица, движущаяся со скоростью света, масса покоя которой равна нулю.
- **47.** Как изменится отрицательный заряд цинковой пластины, помещенной в вакуумную камеру, если ее освещать ультрафиолетовыми лучами через обыкновенное стекло?
- А. Увеличится.
- Б. Уменьшится.
- **В.** Не изменится.
- **48.** Какое из приведенных ниже выражений позволяет рассчитать красную границу фотоэффекта?
 - **A.**hv; **B.** hv E_K ; **B.** hv A_B ; Γ . $A_B + E_K$; II. (hv E_K)/h
 - 49. При каком условии возможен фотоэффект?
- **А.** $\lambda < \lambda_{max}$, где λ_{max} -длина волны, соответствующая красной границе фотоэффекта.
 - **b.** $\lambda > \lambda_{\text{max}}$:
 - **В.** При любом соотношении величин λ и λ_{max} ;

- Укажите вещество, для которого возможен фотоэффект под действием фотонов с энергией 6,4·10-19 Дж:
- **А.**Серебро ($A_B = 6.9 \cdot 10^{-19}$ Дж). **Б.** Вольфрам ($A_{B=}$ $7,2\cdot 10^{-19}$ Дж).
- **В.** Никель ($A_B = 7, 7 \cdot 10^{-19} \, \text{Дж}$).
- Γ . Алюминий ($A_B = 5.9 \cdot 10^{-19} \, \text{Дж}$).
- Д. Платина ($A_B = 8.5 \cdot 10^{-19} \, \text{Дж}$).
- 51. Чему равна работа выхода электрона из металла, если фотоны с энергией 8·10-19 Дж вызывают фотоэффект, при котором кинетическая энергия фотоэлектронов равна 4·10 -19 Дж?
 - **А.** ОДж. **Б.** 2·10⁻¹⁹Дж. **В.** 4·10⁻¹⁹Дж
 - Γ . 8·10⁻¹⁹Дж; Д. 32·10⁻¹⁹ Дж.
- 52. Укажите, что является причиной изменения заряда металлической пластины под действием света?
- А.Разрушение молекул вещества. Б. Разрыв ковалентных связей.
- В. Передача поверхности импульсов фотонов.
- Г. Вырывание электронов из вещества.
- Д. Ионизация молекул вещества.
- 53. Какие свойства электромагнитного излучения проявляются сильнее при уменьшении длины волны?
- А.Волновые. Б. Квантовые.
- В.Как волновые, так и квантовые.
- Г. Проявление свойств не зависит от длины волны.
- 54. Как изменится скорость фотоэлектронов при уменьшении частоты облучающего света?
- А. Увеличится.
- **Б.** Уменышится
- В.Не изменится.

- Как энергия изменится кинетическая фотоэлектронов при увеличении интенсивности облучения в 3 раза?
 - А. Увеличится в 3 раза.
 - **Б.** Увеличится в 9 раз.
 - В. Уменьшится в 3 раза.
 - Г. Уменьшится в 9 раз.
 - Д. Не изменится.
 - Какое из выражений определяет импульс фотона?
- **А.** hv; **Б.** $\frac{hc}{\lambda}$; **В.** $\frac{h}{\lambda}$ **Г.** $\frac{hv}{\lambda}$; **Д.** $\frac{m\theta^2}{\lambda}$; **57.** $\frac{hc}{\lambda}$ В какой точке воль тамперной характеристики (рис. 3) электрический ток определяется только кинетической энергией фотоэлектронов?
 - **А.** Точка 1. **Б.** Точка 2.
 - **В.**Точка 3. **Г.** Точка 4.

- Чему равна кинетическая энергия фотоэлектронов, если излучение длиной волны 2,5·10-7 м вызывает фотоэффект в металле с работой выхода 8·10 -19 Дж?
- **А.** О Дж; **Б.** 10⁻¹⁹ Дж; **В.** 8·10⁻¹⁹ Дж;
- Γ . 16·10⁻¹⁹Дж; Д. 64·10⁻¹⁹Дж
- 59. Какова мощность источника рентгеновского излучения частотой $3 \cdot 10^{17}$ Гц, если он за 1 с испускает $2 \cdot 10^{17}$ фотонов?
- **А.** 10 Вт; **Б.** 20 Вт; **В.** 30 Вт; **Г.** 40 Вт; **Д.** 50Вт.
- На рис.4 изображены графики зависимости кинетической энергии фотоэлектронов от частоты излучения

ДЛЯ двух материалов. Сравните значение работы выхода у этих материалов.

- **А.** Работа выхода у первого материала больше, чем у второго;
 - Б. Работа выхода у второго больше, чем у первого;
 - В. Работа выхода одинакова.