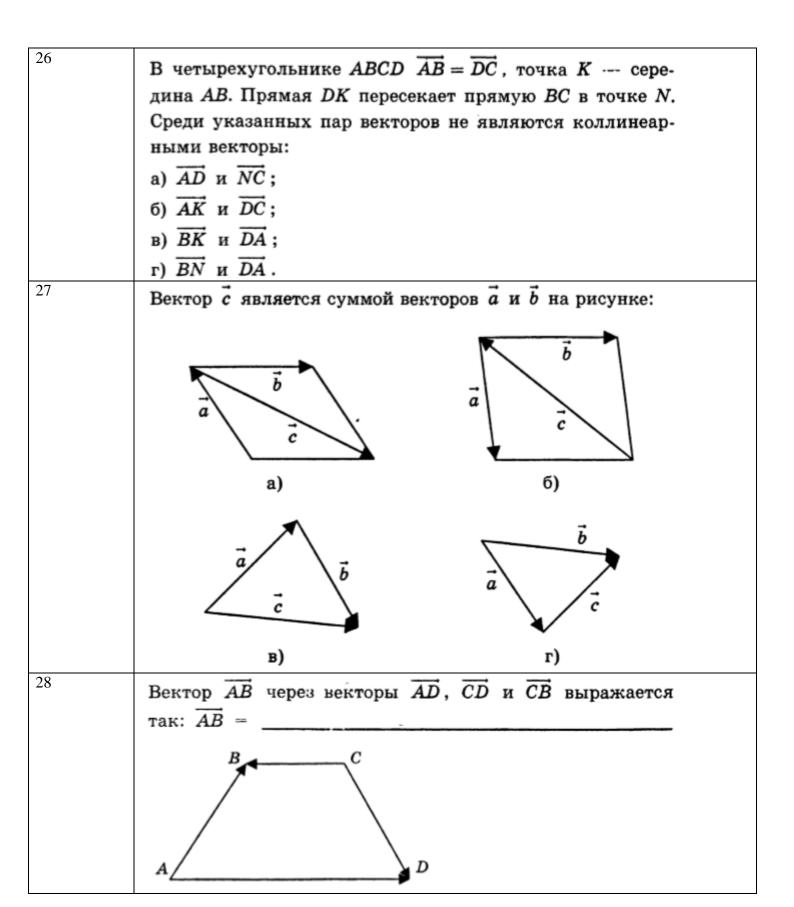
9.3.1, 9.3.2 классы

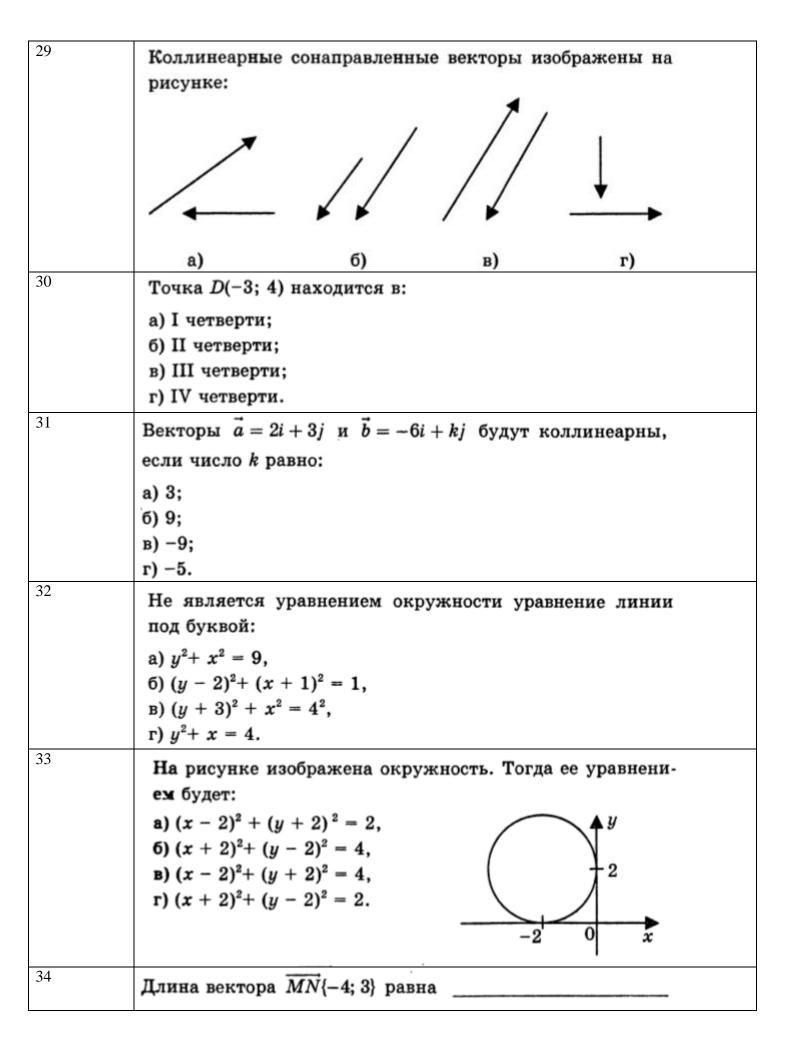
2018-2019 уч.год

Учебник: АЛГЕБРА (ДОРОФЕЕВ Г.В.)

Тема модуля «Векторы. Метод координат»

Проверяемые знания/умения	Проверяемые элементы содержания
Понятие вектора	Вектор, длина вектора, нулевой вектор, кол-
	линеарные, сонаправленные, противоположно направленные и равные вектора.
Сложение и вычитание векто-	Операции над векторами в геометрической
ров	форме (правило треугольника, правило постро-
	ения разности векторов, правило параллело-
	грамма, правило многоугольника).
Умножение вектора на число	Правило построения вектора, получающего-
	ся при умножении вектора на число, определе-
	ние средней линии трапеции.
Координаты вектора.	Лемма о коллинеарных векторах и теорема
Простейшие задачи в коорди-	о разложении вектора по двум неколлинеар-
натах	ным векторам.
	Понятия координат вектора, координат
	суммы и разности векторов, произведения
	формулы координат вектора через координаты
	его конца и начала, координат середины отрез-
	ка, длины вектора и расстояния между двумя точками.
Уравнение окружности и прямой	Уравнение окружности и прямой.


Примерные практические задания:


1	В трапеции $ABCD$ укажите пару сонаправленных векторов. C
	$1) \overline{AB}$ и \overline{CD}
	$(2) \overrightarrow{CB} $ $\stackrel{\frown}{B} \overrightarrow{DA}$
	\overline{DC} и \overline{DA}
	$A D_{4)} \overrightarrow{BC} \text{ M} \overrightarrow{DA}$
2	В ромбе $ABCD$ с диагоналями AC =12 см и BD =16 см найдите величину $ \overrightarrow{DC} $.
3	Определите вид четырехугольника $ABCD$, если выполнены следующие условия: $\overrightarrow{BC} \uparrow \downarrow \overrightarrow{DA}$ и $\overrightarrow{AB} = \overrightarrow{DC}$. 1) трапеция 2) прямоугольник
	□ 3) ромб □ 4) параллелограмм
4	Основание AD прямоугольной трапеции $ABCD$ с прямым углом A равно 17 см, $AB=5$ см, $\angle D=45^\circ$. Найдите длину вектора \overrightarrow{AC} .
5	В треугольнике ABC даны стороны $AB = 5$ см, $BC = 6$ см, $AC = 8$ см. Найдите величину 1) 0 см 2)7см 3) 3 см 4) 19 см
6	В четырехугольнике выразите вектор x через векторы \vec{a} , \vec{b} , \vec{c} \vec{a} \vec{c}

7	Используя правило многоугольника, упростите выражение $\left(\overline{CB} + \overline{AC} + \overline{BD}\right) - \left(\overline{MK} + \overline{KD}\right)$.
8	3 аданы векторы $\vec{m} = 3\vec{a} - 2\vec{b}$ и $\vec{n} = 5\vec{a} + 4\vec{b}$. Найдите вектор $2\vec{m} + \vec{n}$. 1) $8\vec{b}$ 2) $11\vec{a}$ 3) $8\vec{a}$ 4) $-6\vec{b}$
9	Диагонали параллелограмма ABCD пересекаются в точке О, точка М — середина отрезка АО. Выполняется равенство $\overrightarrow{MC} = k\overrightarrow{CA}$. Найдите число k . 1) $k = \frac{1}{4}$ 2) $k = \frac{1}{2}$ 3) $k = -\frac{3}{4}$ 4) $k = \frac{3}{4}$
10	Боковые стороны трапеции равны 13 см и 15см, а периметр равен 48 см. Найти среднюю линию трапеции.
11	Найдите числа x и y , если выполнено равенство $\vec{a}\vec{a} - y\vec{b} = x\vec{a} + 2\vec{b}$ и векторы $\vec{a}\vec{a}\vec{b}$ неколлинеарны. □ 1)x=3, y=2 □ 2)x=2,y=3 □ 3)x=3,y=-2 □ 4)x=-2,y=3
12	Найдите координаты вектора $\overrightarrow{m} = 3\overrightarrow{a} - 2\overrightarrow{b}$, $ec_{\Pi U} \overrightarrow{a} \{-2; 1\}_{U} \overrightarrow{b} \{-3; 2\}$.
13	Даны точки А (1;3) и В (-2; 7). Найдите \overline{AB} и $ \overline{AB} $. 1) \overline{AB} {-3; 4}, $ \overline{AB} $ = 5

14	2) $\overrightarrow{AB} \{3; 4\}$, $ \overrightarrow{AB} = 1$ 3) $\overrightarrow{AB} \{3; -4\}$, $ \overrightarrow{AB} = 7$ 4) $ \overrightarrow{AB} \{-3; -4\}$, $ \overrightarrow{AB} = 5$
14	Найдите координаты точки B, если точка С—середина отрезка AB и A (-3;-1), C(2; 5). □ 1) B(-1;4) □ 2) B (5;6) □ 3) B(7;11) □ 4) B (-5;-6)
15	Найдите величину $ 2\vec{a} - 3\vec{b} $, $\vec{a} = 3\vec{i} + 2\vec{j}$ и $\vec{b} = 5\vec{i} - 4\vec{j}$.
16	На оси ординат найдите точку C , равноудаленную от точек $A(4;-3)$ и $B(8;1)$.
17	Определите координаты центра C и радиус r окружности, заданной уравнением $(x+5)2+(y-2)2=9$. \square
18	Найдите координаты точек A и B пересечения прямой, заданной уравнением 2x-3y-12=0, с осями координат. □ 1) A(-4;0), D(6;0) □ 2) A(6;0), D(0;-4) □ 3) A(-6;0), D(0;4) □ 4) A(4;0),D(-6;0)
19	Прямая, заданная уравнением <i>ах</i> -5у+9=0, проходит через точку A(2;3). Найдите число a. □ 1)a=3 2) a=2 3) a=-2 4) a=-3
20	В треугольнике ABC MN — средняя линия, $M \in AB$, $N \in BC$.
	Найдите координаты точек B и C , если $A(-1; 3)$, $M(3; 4)$, $N(4; 2)$.

21	Векторной величиной является:
	а) масса тела;
	б) скорость тела;
	в) время;
	г) площадь.
22	Равенство $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ называется:
	а) переместительным законом;
	б) сочетательным законом;
	в) правилом параллелограмма;
	г) правилом треугольника.
23	На рисунке изображены векторы. Вектором, равным
	вектору $2\vec{a}$, будет вектор:
	a) \vec{b} ; \vec{b}
	6) \vec{c} ;
	\vec{m} ;
	\vec{r}) \vec{n} .
24	
24	Отрезок MN является средней линией треугольника ABC . Число k , для которого $\overrightarrow{MA} = k \cdot \overrightarrow{AB}$, равно:
	a) 2, $R = R$
	a) 2, 6) -2;
	. 1
	$(B) \frac{1}{2};$
	r) $-\frac{1}{2}$
	$A \triangleright A$
25	ABCD — параллелограмм, О — точка пересечения его
	диагоналей. Тогда верным будет равенство:
	a) $\overrightarrow{AO} - \overrightarrow{OD} = \overrightarrow{AD}$;
	6) $\overrightarrow{AO} - \overrightarrow{DO} = \overrightarrow{AD}$;
	B) $\overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{OA}$;
	B) $\overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{OA}$; r) $\overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AC}$.
	$\Gamma) AB + BO = AC.$

35	Даны точки $A(2; 0)$, $B(-1; 3)$, $C(4; 6)$. Тогда вектор $\ddot{a} = \overrightarrow{BA} - \overrightarrow{BC}$ имеет координаты
36	Радиус-вектор точки М изображен на рисунке:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	a) 6)
	O X M X M X
37	Расстояние от точки <i>B</i> (-8; 6) до оси ординат равно:
	a) -8; б) 6; в) 10; г) 8.
38	Если окружность задана уравнением $(x-3)^2 + (y+2)^2 = 9$, то координаты ее центра M и радиус r равны: а) $M(3; 2)$, $r = 9$; б) $M(3; -2)$, $r = 3$; в) $M(-3; 2)$, $r = 3$; г) $M(-3; -2)$, $r = 9$.
39	Укажите номера верных утверждений. 1) Векторы $\vec{a}(1; 6)$ и $\vec{b}(3; 2)$ коллинеарные. 2) Координатный вектор имеет направление одной из положительных координатных полуосей. 3) Любой вектор можно разложить по двум не коллинеарным векторам. 4) Не равные векторы могут иметь равные координаты.
40	Укажите номера верных утверждений. 1) Векторы $n(-12;-17)$ и $m(-6;-7)$ коллинеарные. 2) Любой вектор можно разложить по двум коллинеарным векторам. 3) Координаты единичного вектора меньше 1. 4) У трёх равных векторов координаты равны.

41	Даны векторы \vec{a} {3; -2} и \vec{b} {-7; 3}. Укажите абсциссу вектора $\vec{c}=2\vec{a}-\vec{b}$.					
42	Укажите ординату вектора \overrightarrow{OA} , изображенного на рисунке.	1	x			
43	Укажите пары коллинеарных векторов. 1) \vec{a} {1; 3} и \vec{b} {-1; -3} 3) \vec{e} {-2; 3} и \vec{f} {-4; 6} 2) \vec{c} {-1; 5} и \vec{d} {5; -1} 4) \vec{m} {-6; -2} и \vec{n} {3; -1}					