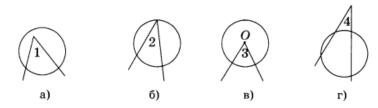
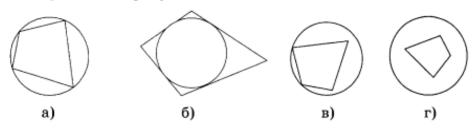

Материалы для сайта по математике (геометрия) 8 класс (все классы). Учитель: Куприкова Светлана Александровна Подготовка к тесту - Окружность

Тема	Знать	Уметь
Касательная к окружности.	Знать:	Уметь:
Центральные и вписанные	- возможные случаи	- выполнять задачи на
углы.	взаимного расположения	построение окружностей и
Четыре замечательные точки треугольника. Вписанная и описанная окружности.	прямой и окружности,	касательных,
	- определение касательной,	- определять отрезки хорд
	- свойство и признак	окружностей;
	касательной;	- выполнять построение
	- какой угол называется	замечательных точек
	центральным и какой	треугольника;
	вписанным,	- применять теоремы при
	- как определяется	при решении задач;
	градусная мера дуги	- выполнять построение
	окружности,	замечательных точек
	теорему о вписанном угле,	треугольника.
	следствия из нее,	
	- теорему о произведении	
	отрезков пересекающихся	
	хорд;	
	- теоремы о биссектрисе	
	угла и о серединном	
	перпендикуляре к отрезку;	
	- знать, какая окружность	
	называется вписанной в	
	многоугольник и какая	
	описанной около	
	многоугольника.	




А1. Вписанная в треугольник окружность изображена на рисунке:

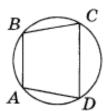
А2. Вписанный в окружность угол изображен на рисунке:

А2. Описанная около четырехугольника окружность изображена на рисунке:

- Центром описанного около окружности треугольника является точка пересечения:
 - а) биссектрис треугольника;
 - б) высот треугольника;
 - в) медиан треугольника;
 - г) серединных перпендикуляров к сторонам треугольника.

Расстояние от центра окружности до прямой равно радиусу окружности. Тогда окружность и прямая имеют общих точек:

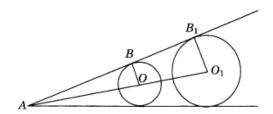
- a) 2;
- б) 1;
- в) 0;
- r) 3.


Для того, чтобы вокруг выпуклого четырехугольника можно было описать окружность, должно выполняться следующее равенство:

a)
$$\angle A + \angle B = \angle D + \angle C$$
;

$$6) AB + CD = BC + AD;$$

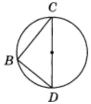
B)
$$\angle A + \angle C = \angle D + \angle B$$
;


r)
$$AD \cdot BC = AB \cdot CD$$
.

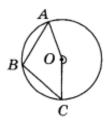
- Вокруг параллелограмма описали окружность. Тогда этот параллелограмм является:
 - а) квадратом;
 - б) ромбом;
 - в) прямоугольником;
 - г) произвольным параллелограммом.

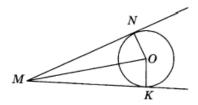
Две окружности с центрами в точках O и O_1 касаются сторон угла (B и B_1 — точки касания). Тогда треугольники ABO и AB_1O_1 будут:

- а) подобны по двум углам;
- б) подобны по двум прилежащим сторонам и углу между ними;
- в) подобны по трем пропорциональным сторонам;
- г) не подобны.

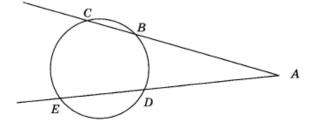

Если в треугольнике одна из его вершин является точкой пересечения высот данного треугольника, то этот треугольник будет:

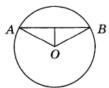
- а) остроугольным, не равносторонним;
- б) тупоугольным;
- в) прямоугольным;
- г) равносторонним.


На рисунке DC — диаметр окружности. Тогда угол DBC равен _____


На рисунке DC — диаметр окружности. Тогда угол DBC равен _____

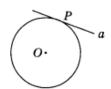
На рисунке $∠ABC = 120^\circ$. Тогда ∠AOC равен

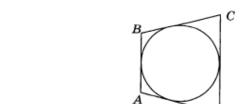

На рисунке MN и MK — касательные к окружности, ON = OK = R. Тогда отрезок NM равен отрезку _____

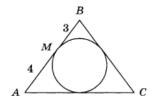

Расстояние d от центра окружности O до прямой l равно b см, а радиус окружности b равен b см. Тогда прямая b и окружность с центром в точке b и радиусом b будут

Центральный угол больше вписанного угла, опирающегося на ту же дугу, на 40°. Тогда градусная мера вписанного угла будет равна _______

На рисунке AC и AE — секущие. $\cup BD = 30^\circ$, $\cup CE = 70^\circ$ Тогда $\angle CAE$ равен _____


На рисунке R=OB=5 см, AB=6 см. Тогда расстояние от центра окружности до хорды AB равно _____


На рисунке изображен угол, который называется


Прямая а, изображенная на рисунке, называется

Окружность вписана в четырехугольник ABCD. Тогда AB + DC =

В равнобедренный треугольник ABC с основанием AC вписана окружность. M — точка касания, делит одну из боковых сторон на отрезки длиной 3 см и 4 см. Тогда периметр треугольника ABC равен _____

